Dynamic Monopolies and Vaccination

Lucia Penso

Universität Ulm

Dynamic Monopolies and Vaccination

Lucia Penso

Universität Ulm

Joint with Bessy, Dourado, Ehard, Rautenbach

Informal Definition

Informal Definition

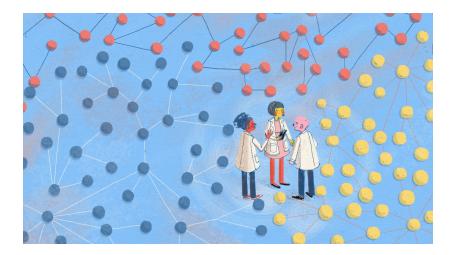
Dynamic monopolies are a simple graph-theoretical model for various types of viral processes in networks.

Informal Definition

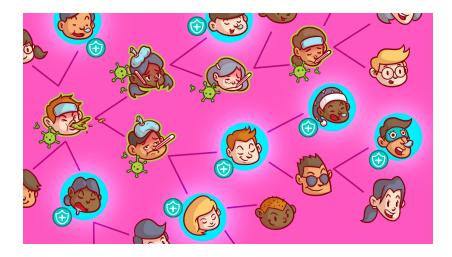
Dynamic monopolies are a simple graph-theoretical model for various types of viral processes in networks.

... examples for things that can spread...

- opinions,
- computer viruses,
- diseases,
- products,
- habits,
- ...



(picture taken from www.quantamagazine.org)



(picture taken from www.quantamagazine.org)

Let G be a graph.

Let G be a graph. Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function.

Let G be a graph. Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

Let G be a graph. Let $\tau : V(G) \rightarrow \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

Let G be a graph. Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

 $H \leftarrow D;$

Let G be a graph. Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

 $H \leftarrow D$; while $|N_G(u) \cap H| \ge \tau(u)$ for some $u \in V(G) \setminus H$

Let G be a graph. Let $\tau : V(G) \rightarrow \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

 $H \leftarrow D$; while $|N_G(u) \cap H| \ge \tau(u)$ for some $u \in V(G) \setminus H$ do $| H \leftarrow H \cup \{u\}$;

Let G be a graph. Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

```
H \leftarrow D;
while |N_G(u) \cap H| \ge \tau(u) for some u \in V(G) \setminus H do
| H \leftarrow H \cup \{u\};
end
H_{(G,\tau)}(D) \leftarrow H;
```

Let G be a graph. Let $\tau : V(G) \to \mathbb{Z}$ be a threshold function. Let $D \subseteq V(G)$.

The hull $H_{(G,\tau)}(D)$ of D in (G,τ) is obtained as follows:

```
 \begin{array}{l} H \leftarrow D; \\ \text{while } |N_G(u) \cap H| \geq \tau(u) \text{ for some } u \in V(G) \setminus H \text{ do} \\ | \quad H \leftarrow H \cup \{u\}; \\ \text{end} \\ H_{(G,\tau)}(D) \leftarrow H; \\ \text{return } H_{(G,\tau)}(D); \end{array}
```

Definition

$$D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)$$

D is a dynamic monopoly of (G, τ)

Definition

$$\min\left\{|D|: \quad \underbrace{D\subseteq V(G): H_{(G,\tau)}(D)=V(G)}_{\mathcal{F}(G,\tau)}\right\}$$

D is a dynamic monopoly of (G, τ)

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

Definition

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

• dyn(*G*, 0)

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

•
$$\operatorname{dyn}(G,0) = 0.$$

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G,1)

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G, 1) = number of components of G.

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G, 1) = number of components of G.
- $dyn(G, d_G)$

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G, 1) = number of components of G.
- $dyn(G, d_G) = minimum$ order of a vertex cover of G.

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G, 1) = number of components of G.
- $dyn(G, d_G) = minimum$ order of a vertex cover of G.
- $dyn(G, d_G 1)$

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G, 1) = number of components of G.
- $dyn(G, d_G) = minimum$ order of a vertex cover of G.
- $dyn(G, d_G 1) = minimum$ order of a feedback vertex set of G.

Definition

٢

$$dyn(G,\tau) = \min \left\{ |D| : \underbrace{D \subseteq V(G) : H_{(G,\tau)}(D) = V(G)}_{D \text{ is a dynamic monopoly of } (G,\tau)} \right\}$$

- $\operatorname{dyn}(G, 0) = 0.$
- dyn(G, 1) = number of components of G.
- $dyn(G, d_G) = minimum$ order of a vertex cover of G.
- $dyn(G, d_G 1) = minimum$ order of a feedback vertex set of G.

$$D$$
 is a a dynamic monopoly of (G, τ)

$$V(G) \setminus D$$
 is a $(d_G - \tau)$ -degenerate set in G .

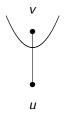
Theorem (Chen '09, P et al. '11)

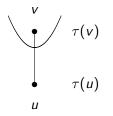
Determining dyn(G, 2) is NP-hard.

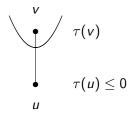
Theorem (Chen '09, P et al. '11)

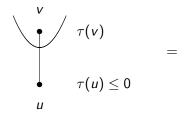
Determining dyn(G, 2) is NP-hard.

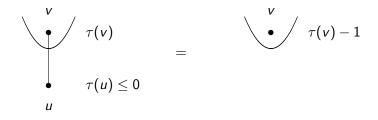
...even hard to approximate.

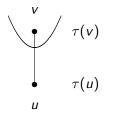


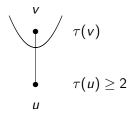


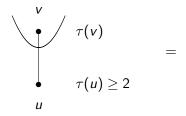


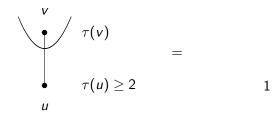


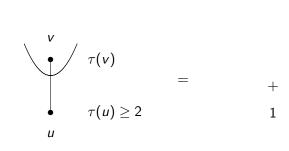


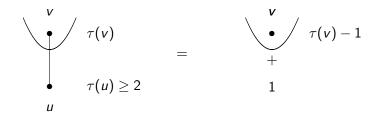


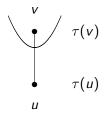


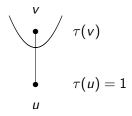


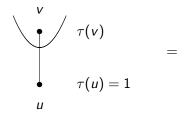


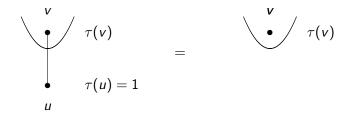












Theorem (Chen '09, P et al. '11)

For a given pair (T, τ) , where T is a tree, $dyn(T, \tau)$ can be determined in linear time.

Two extensions of this result:

Two extensions of this result:

Theorem (P et al. '11)

For a given pair (G, τ) , where G has blocks of bounded order, $dyn(G, \tau)$ can be determined in polynomial time.

Two extensions of this result:

Theorem (P et al. '11)

For a given pair (G, τ) , where G has blocks of bounded order, $dyn(G, \tau)$ can be determined in polynomial time.

Theorem (Ben-Zwi et al. '11)

For a given pair (G, τ) , where G has order n and treewidth w, $dyn(G, \tau)$ can be determined in $n^{O(w)}$ time.

Two extensions of this result:

Theorem (P et al. '11)

For a given pair (G, τ) , where G has blocks of bounded order, $dyn(G, \tau)$ can be determined in polynomial time.

Theorem (Ben-Zwi et al. '11)

For a given pair (G, τ) , where G has order n and treewidth w, $dyn(G, \tau)$ can be determined in $n^{O(w)}$ time. Furthermore, it is "highly unlikely" that $dyn(G, \tau)$ can be determined in $n^{o(\sqrt{w})}$ time.

Two extensions of this result:

Theorem (P et al. '11)

For a given pair (G, τ) , where G has blocks of bounded order, $dyn(G, \tau)$ can be determined in polynomial time.

Theorem (Ben-Zwi et al. '11)

For a given pair (G, τ) , where G has order n and treewidth w, $dyn(G, \tau)$ can be determined in $n^{O(w)}$ time. Furthermore, it is "highly unlikely" that $dyn(G, \tau)$ can be determined in $n^{o(\sqrt{w})}$ time.

The last result suggests that $dyn(G, \tau)$ might only be tractable for tree-structured graphs.

The key observation for another extension:

The key observation for another extension:

Lemma (P et al. '11)

If (G, τ) is such that

• G is a 2-connected chordal graph and

• $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.

The key observation for another extension:

```
Lemma (P et al. '11)
```

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.

The key observation for another extension:

```
Lemma (P et al. '11)
```

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.

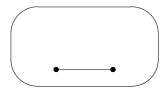
The key observation for another extension:

```
Lemma (P et al. '11)
```

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.



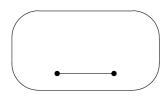
The key observation for another extension:

```
Lemma (P et al. '11)
```

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.



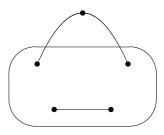
The key observation for another extension:

Lemma (P et al. '11)

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.



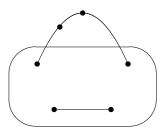
The key observation for another extension:

Lemma (P et al. '11)

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.



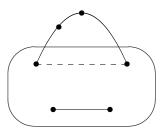
The key observation for another extension:

Lemma (P et al. '11)

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.



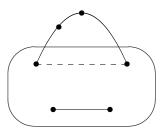
The key observation for another extension:

Lemma (P et al. '11)

If (G, τ) is such that

- G is a 2-connected chordal graph and
- $\tau \leq 2$,

then $\{u, v\}$ is a dynamic monopoly for (G, τ) for every edge uv of G.



Theorem (P et al. '11)

For a given pair (G, τ) , where

• G is chordal and

•
$$\tau \leq 2$$
,

 $dyn(G, \tau)$ can be determined in polynomial time.

Lemma (Chiang et al. '13)

Let t be a non-negative integer. If (G, τ) is such that

- G is a t-connected chordal graph and
- $\tau \leq t$,

then C is a dynamic monopoly for (G, τ) for every clique C of order t.

Lemma (Chiang et al. '13)

Let t be a non-negative integer. If (G, τ) is such that

- G is a t-connected chordal graph and
- $\tau \leq t$,

then C is a dynamic monopoly for (G, τ) for every clique C of order t. In particular,

 $\operatorname{dyn}(G,\tau) \leq t.$

Problem

Is there a polynomial time algorithm that determines

 $\operatorname{dyn}(G,\tau)$

```
for a given pair (G, \tau) such that
```

- G is chordal, and
- τ is bounded?

Theorem (BEPR '18)

Let t be a non-negative integer. For a given pair (G, τ) , where

- G is an interval graph, and
- $\tau \leq t$,

 $dyn(G, \tau)$ can be determined in polynomial time.

Theorem (BEPR '18)

For a given triple (G, τ, k) , where

- G is a chordal graph,
- τ is a threshold function for G, and
- k is a positive integer,

it is NP-complete to decide whether $dyn(G, \tau) \leq k$.

Theorem (BEPR '18)

For a given triple (G, τ, k) , where

- G is a chordal graph,
- τ is a threshold function for G, and
- k is a positive integer,

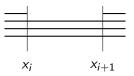
it is NP-complete to decide whether $dyn(G, \tau) \leq k$.

▶ (jump a little?!)

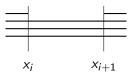
Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function.

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.



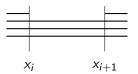
Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.



Every minimal vertex cut of G is a clique of the form

$$C_i = \Big\{ u \in V(G) : [x_i, x_{i+1}] \subseteq I(u) \Big\}.$$

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.

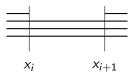


Every minimal vertex cut of G is a clique of the form

$$C_i = \Big\{ u \in V(G) : [x_i, x_{i+1}] \subseteq I(u) \Big\}.$$

For $c_i = |C_i|$, we have $|c_i - c_{i+1}| = 1$.

Let G be an interval graph of order n, and let $\tau \leq t$ be a threshold function. Let $(I(u))_{u \in V(G)}$ be an interval representation using closed intervals with distinct endpoints $x_1 < x_2 < \ldots < x_{2n}$.



Every minimal vertex cut of G is a clique of the form

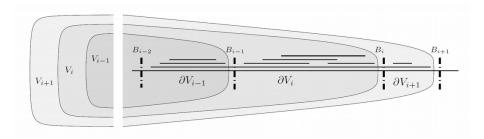
$$C_i = \Big\{ u \in V(G) : [x_i, x_{i+1}] \subseteq I(u) \Big\}.$$

For $c_i = |C_i|$, we have $|c_i - c_{i+1}| = 1$. Let $j_1 < j_2 < \ldots < j_{k-1}$ be the indices i with $c_i < \min \left\{ c_{i-1}, c_{i+1}, t \right\}$

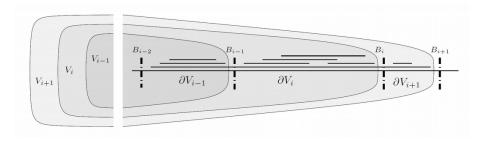
and let $j_k = 2n - 1$.

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.

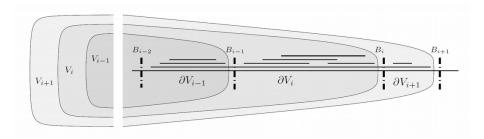


Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.



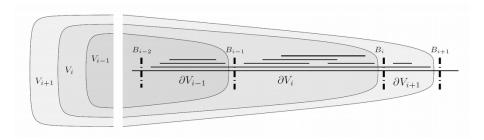
 $|B_i| < t.$

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.



 $|B_i| < t$. No vertex in $V_i \setminus B_i$ has a neighbor in $V(G) \setminus V_i$.

Let $V_i = C_1 \cup \cdots \cup C_{j_i}$, $G_i = G[V_i]$, and $B_i = C_{j_i}$.



 $|B_i| < t$. No vertex in $V_i \setminus B_i$ has a neighbor in $V(G) \setminus V_i$. Let $\partial V_i = (V_i \setminus V_{i-1}) \cup B_{i-1}$, and $\partial G_i = G[\partial V_i]$.

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Proof:

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

Claim

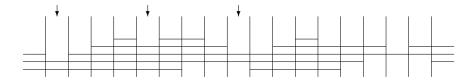
Each ∂G_i is either a clique of order at most t or t-connected.

Claim

Each ∂G_i is either a clique of order at most t or t-connected.

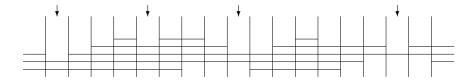
Claim

Each ∂G_i is either a clique of order at most t or t-connected.



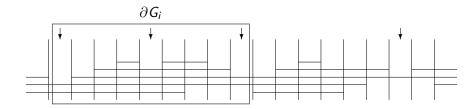
Claim

Each ∂G_i is either a clique of order at most t or t-connected.



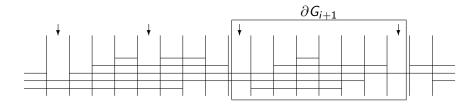
Claim

Each ∂G_i is either a clique of order at most t or t-connected.



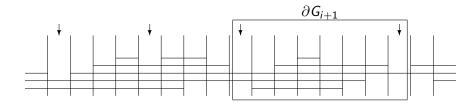
Claim

Each ∂G_i is either a clique of order at most t or t-connected.



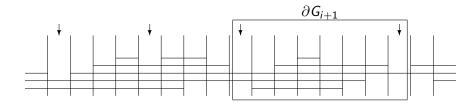
Claim

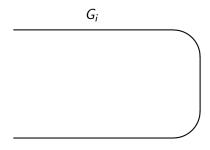
Each ∂G_i is either a clique of order at most t or t-connected.

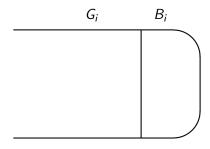


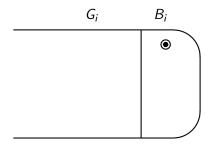
Claim

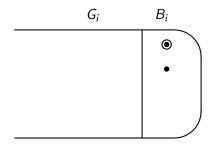
Each ∂G_i is either a clique of order at most t or t-connected.

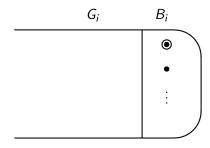


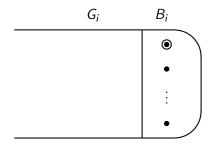


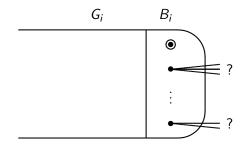


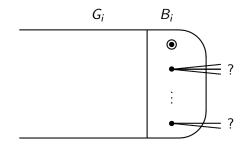




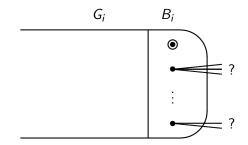




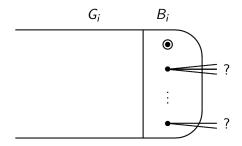




A local cascade for G_i is a triple (X_i, \prec_i, ρ_i) , where

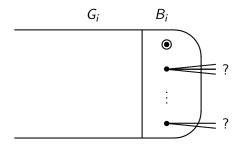


A local cascade for G_i is a triple (X_i, \prec_i, ρ_i) , where X_i is a subset of B_i ,



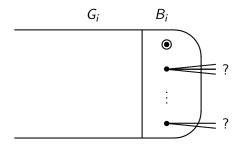
A local cascade for G_i is a triple (X_i, \prec_i, ρ_i) , where

- (X_i is a subset of B_i ,
- $\textcircled{0} \quad \prec_i$ is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and



A local cascade for G_i is a triple (X_i, \prec_i, ρ_i) , where

- () X_i is a subset of B_i ,
- \bigcirc \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and



A local cascade for G_i is a triple (X_i, \prec_i, ρ_i) , where

- () X_i is a subset of B_i ,
- \bigcirc \prec_i is a linear order on B_i with $X_i \prec_i B_i \setminus X_i$, and

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\mathrm{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\operatorname{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

(iv) $|(X_i \cup Y_i) \cap \partial V_j| \le t$ for every $j \in [i]$.

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\operatorname{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

(iv) $|(X_i \cup Y_i) \cap \partial V_j| \le t$ for every $j \in [i]$. (v) There is a linear extension

 $u_1 \prec \ldots \prec u_{n(G_i)}$

of \prec_i to $V(G_i)$ such that $X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)$,

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\operatorname{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

(iv) $|(X_i \cup Y_i) \cap \partial V_j| \le t$ for every $j \in [i]$. (v) There is a linear extension

$$u_1 \prec \ldots \prec u_{n(G_i)}$$

of \prec_i to $V(G_i)$ such that $X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)$, and, for every j in $[n(G_i)]$,

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\mathrm{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

(iv) $|(X_i \cup Y_i) \cap \partial V_j| \le t$ for every $j \in [i]$. (v) There is a linear extension

$$u_1 \prec \ldots \prec u_{n(G_i)}$$

of \prec_i to $V(G_i)$ such that $X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)$, and, for every j in $[n(G_i)]$, • either $u_j \in X_i \cup Y_i$,

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\mathrm{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

(iv) $|(X_i \cup Y_i) \cap \partial V_j| \le t$ for every $j \in [i]$. (v) There is a linear extension

$$u_1 \prec \ldots \prec u_{n(G_i)}$$

of \prec_i to $V(G_i)$ such that $X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)$, and, for every j in $[n(G_i)]$,

(a) either $u_j \in X_i \cup Y_i$, (b) or $u_j \in V_i \setminus (B_i \cup Y_i)$ and $|N_G(u_j) \cap \{u_1, \dots, u_{j-1}\}| \ge \tau(u_j)$,

For a local cascade (X_i, \prec_i, ρ_i) for G_i , let

 $\mathrm{dyn}_i(X_i,\prec_i,\rho_i)$

be the minimum order of a subset Y_i of $V_i \setminus B_i$ such that the following conditions hold:

(iv) $|(X_i \cup Y_i) \cap \partial V_j| \le t$ for every $j \in [i]$. (v) There is a linear extension

$$u_1 \prec \ldots \prec u_{n(G_i)}$$

of \prec_i to $V(G_i)$ such that $X_i \cup Y_i \prec V_i \setminus (X_i \cup Y_i)$, and, for every j in $[n(G_i)]$,

(a) either $u_j \in X_i \cup Y_i$,

• or $u_j \in V_i \setminus (B_i \cup Y_i)$ and $|N_G(u_j) \cap \{u_1, \ldots, u_{j-1}\}| \ge \tau(u_j)$,

 $or \ u_j \in B_i \setminus X_i \ \text{and} \ \left| N_G(u_j) \cap \{u_1, \ldots, u_{j-1}\} \right| \geq \tau(u_j) - \rho_i(u_j).$

Claim

$$\operatorname{dyn}(G, \tau) = \min \left\{ 1 + \operatorname{dyn}_k(B_k, \emptyset, 0), 0 + \operatorname{dyn}_k(\emptyset, \emptyset, 0) \right\}.$$

Claim

$$\operatorname{dyn}(G, \tau) = \min \Big\{ 1 + \operatorname{dyn}_k(B_k, \emptyset, 0), 0 + \operatorname{dyn}_k(\emptyset, \emptyset, 0) \Big\}.$$

Claim

For every *i* and every local cascade (X_i, \prec_i, ρ_i) for G_i , $dyn_i(X_i, \prec_i, \rho_i)$ can be determined recursively in polynomial time.

Claim

$$\operatorname{dyn}(G, \tau) = \min \Big\{ 1 + \operatorname{dyn}_k(B_k, \emptyset, 0), 0 + \operatorname{dyn}_k(\emptyset, \emptyset, 0) \Big\}.$$

Claim

For every *i* and every local cascade (X_i, \prec_i, ρ_i) for G_i , $dyn_i(X_i, \prec_i, \rho_i)$ can be determined recursively in polynomial time.

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

• Scenario 1

By increasing the threshold value of b vertices beyond their degree.

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

• Scenario 1

By increasing the threshold value of *b* vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

• Scenario 1

By increasing the threshold value of *b* vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

• Scenario 2

By removing b vertices.

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

• Scenario 1

By increasing the threshold value of *b* vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

• Scenario 2

By removing b vertices.

(The vaccinated vertices no longer participate in the spreading.)

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

• Scenario 1

By increasing the threshold value of *b* vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

• Scenario 2

By removing b vertices.

(The vaccinated vertices no longer participate in the spreading.)

• Scenario 3

By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to b.

 $dyn(G, \tau)$ may be considered a measure of network vulnerability.

Given a budget $b \in \mathbb{Z}_{\geq 0}$, we want to minimize this vulnerability by maximizing $dyn(G, \tau)$

• Scenario 1

By increasing the threshold value of *b* vertices beyond their degree. (Note that the vaccinated vertices belong to every dynamic monopoly and still participate in the spreading.)

• Scenario 2

By removing b vertices.

(The vaccinated vertices no longer participate in the spreading.)

• Scenario 3

By increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase to *b*. (*Partial/imperfect immunization.*)

Theorem (Khoshkhah et al. '15)

Theorem (Khoshkhah et al. '15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

Theorem (Khoshkhah et al. '15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$. If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $dyn(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\bar{\tau}$ equals

Theorem (Khoshkhah et al. '15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $dyn(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\overline{\tau}$ equals

$$\max\left\{k:\sum_{i=1}^k (d_G(u_i)+1) \le n(G)\bar{\tau}\right\}.$$

Theorem (Khoshkhah et al. '15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $dyn(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\overline{\tau}$ equals

$$\max\left\{k:\sum_{i=1}^k (d_G(u_i)+1) \le n(G)\bar{\tau}\right\}.$$

Proof: Follows easily from the bound due to Ackerman et al. \Box

Theorem (Khoshkhah et al. '15)

Let $\bar{\tau} \in \mathbb{R}_{>0}$.

If G is a graph with vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$, then the maximum of $dyn(G, \tau)$ over all non-negative choices for τ such that the average threshold is at most $\overline{\tau}$ equals

$$\max\left\{k:\sum_{i=1}^k (d_G(u_i)+1) \le n(G)\bar{\tau}\right\}.$$

Proof: Follows easily from the bound due to Ackerman et al. \Box

Theorem (Khoshkhah et al. '15)

Requiring $0 \le \tau \le d_G$ in the above setting, the problem becomes NP-hard for planar graphs but can be solved efficiently for trees.

$$\operatorname{vacc}_1(G, \tau, b) = \max \left\{ \operatorname{dyn}(G, \tau_X) : X \in \binom{V(G)}{b} \right\}$$

$$\operatorname{vacc}_{1}(G,\tau,b) = \max\left\{\operatorname{dyn}(G,\tau_{X}): X \in \binom{V(G)}{b}\right\}$$
$$\operatorname{vacc}_{2}(G,\tau,b) = \max\left\{\operatorname{dyn}(G-Y,\tau): Y \in \binom{V(G)}{b}\right\}$$

$$\operatorname{vacc}_{1}(G,\tau,b) = \max\left\{\operatorname{dyn}(G,\tau_{X}): X \in \binom{V(G)}{b}\right\}$$
$$\operatorname{vacc}_{2}(G,\tau,b) = \max\left\{\operatorname{dyn}(G-Y,\tau): Y \in \binom{V(G)}{b}\right\}$$
$$\operatorname{vacc}_{3}(G,\tau,\iota_{\max},b) = \max\left\{\operatorname{dyn}(G,\tau+\iota): \iota \in \mathbb{Z}^{V(G)}, \\ 0 \le \iota \le \iota_{\max}, \text{ and } \iota(V(G)) = b\right\}$$

Theorem (BDEPR '18)

Given a tree T of order n, τ , b, and ι_{max} ,

Theorem (BDEPR '18)

Given a tree T of order n, τ , b, and ι_{max} ,

• $\operatorname{vacc}_1(T, \tau, b)$ and $\operatorname{vacc}_3(T, \tau, b)$ can be determined in $O(n^2(b+1)^2)$ time, and

Theorem (BDEPR '18)

Given a tree T of order n, τ , b, and ι_{max} ,

• $\operatorname{vacc}_1(T, \tau, b)$ and $\operatorname{vacc}_3(T, \tau, b)$ can be determined in $O\left(n^2(b+1)^2\right)$ time, and

• $\operatorname{vacc}_2(T, \tau, b)$ can be determined in $O\left(n^3(b+1)^2\right)$ time.

Thank you for the attention!