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Dynamic Monopolies

Informal Definition

Dynamic monopolies are a simple graph-theoretical model for various types
of viral processes in networks.

...examples for things that can spread...
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Dynamic Monopolies

(picture taken from www.quantamagazine.org)
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Dynamic Monopolies

Let G be a graph.

Let τ : V (G )→ Z be a threshold function.
Let D ⊆ V (G ).

The hull H(G ,τ)(D) of D in (G , τ) is obtained as follows:

H ← D;
while |NG (u) ∩ H| ≥ τ(u) for some u ∈ V (G ) \ H do

H ← H ∪ {u};
end
H(G ,τ)(D)← H;

return H(G ,τ)(D);
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Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| :

D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸
D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) =

min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0)

= 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1)

= number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG )

= minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1)

= minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Definition

dyn(G , τ) = min
{
|D| : D ⊆ V (G ) : H(G ,τ)(D) = V (G )︸ ︷︷ ︸

D is a dynamic monopoly of (G , τ)

}

dyn(G , 0) = 0.

dyn(G , 1) = number of components of G .

dyn(G , dG ) = minimum order of a vertex cover of G .

dyn(G , dG − 1) = minimum order of a feedback vertex set of G .

D is a a dynamic monopoly of (G , τ)

m
V (G ) \ D is a (dG − τ)-degenerate set in G .

6 / 1



Dynamic Monopolies

Theorem (Chen ’09, P et al. ’11)

Determining dyn(G , 2) is NP-hard.

...even hard to approximate.
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Dynamic Monopolies

A simple reduction algorithm for trees...

s
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τ(u) ≤ 0

=

sv τ(v)− 1
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A simple reduction algorithm for trees...
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Dynamic Monopolies

Theorem (Chen ’09, P et al. ’11)

For a given pair (T , τ), where T is a tree, dyn(T , τ) can be determined in
linear time.
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Dynamic Monopolies

Two extensions of this result:

Theorem (P et al. ’11)

For a given pair (G , τ), where G has blocks of bounded order, dyn(G , τ)
can be determined in polynomial time.

Theorem (Ben-Zwi et al. ’11)

For a given pair (G , τ), where G has order n and treewidth w , dyn(G , τ)
can be determined in nO(w) time. Furthermore, it is ”highly unlikely” that
dyn(G , τ) can be determined in no(

√
w) time.

The last result suggests that dyn(G , τ) might only be tractable for
tree-structured graphs.
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Dynamic Monopolies
The key observation for another extension:

Lemma (P et al. ’11)

If (G , τ) is such that

G is a 2-connected chordal graph and

τ ≤ 2,

then {u, v} is a dynamic monopoly for (G , τ) for every edge uv of G .

Proof:
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Dynamic Monopolies

Theorem (P et al. ’11)

For a given pair (G , τ), where

G is chordal and

τ ≤ 2,

dyn(G , τ) can be determined in polynomial time.
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Dynamic Monopolies

Lemma (Chiang et al. ’13)

Let t be a non-negative integer.
If (G , τ) is such that

G is a t-connected chordal graph and

τ ≤ t,

then C is a dynamic monopoly for (G , τ) for every clique C of order t.

In particular,
dyn(G , τ) ≤ t.
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Dynamic Monopolies

Problem

Is there a polynomial time algorithm that determines

dyn(G , τ)

for a given pair (G , τ) such that

G is chordal, and

τ is bounded?
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Dynamic Monopolies

Theorem (BEPR ’18)

Let t be a non-negative integer.
For a given pair (G , τ), where

G is an interval graph, and

τ ≤ t,

dyn(G , τ) can be determined in polynomial time.
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Dynamic Monopolies

Theorem (BEPR ’18)

For a given triple (G , τ, k), where

G is a chordal graph,

τ is a threshold function for G , and

k is a positive integer,

it is NP-complete to decide whether dyn(G , τ) ≤ k .

(jump a little?!)
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Dynamic Monopolies

Let G be an interval graph of order n, and let τ ≤ t be a threshold
function. Let (I (u))u∈V (G) be an interval representation using closed
intervals with distinct endpoints x1 < x2 < . . . < x2n.

xi xi+1

Every minimal vertex cut of G is a clique of the form

Ci =
{
u ∈ V (G ) : [xi , xi+1] ⊆ I (u)

}
.

For ci = |Ci |, we have |ci − ci+1| = 1.

Let j1 < j2 < . . . < jk−1 be the indices i with

ci < min
{
ci−1, ci+1, t

}
and let jk = 2n − 1.

19 / 1
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Dynamic Monopolies

Let Vi = C1 ∪ · · · ∪ Cji , Gi = G [Vi ], and Bi = Cji .

|Bi | < t. No vertex in Vi \ Bi has a neighbor in V (G ) \ Vi .

Let ∂Vi = (Vi \ Vi−1) ∪ Bi−1, and ∂Gi = G [∂Vi ].
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Dynamic Monopolies

Claim

Each ∂Gi is either a clique of order at most t or t-connected.

Proof: Suppose t = 3.

? ? ? ?

�
(jump a little?!)
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Dynamic Monopolies

$

%

Gi Bisfs
...s ?

?

A local cascade for Gi is a triple (Xi ,≺i , ρi ), where

(i) Xi is a subset of Bi ,

(ii) ≺i is a linear order on Bi with Xi ≺i Bi \ Xi , and

(iii) ρi : Bi \ Xi → {0, 1, . . . , n}.

There are O
(

2t−1(t − 1)!(n + 1)t−1
)

such local cascades.
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Dynamic Monopolies

For a local cascade (Xi ,≺i , ρi ) for Gi , let

dyni (Xi ,≺i , ρi )

be the minimum order of a subset Yi of Vi \ Bi such that the following
conditions hold:

(iv) |(Xi ∪ Yi ) ∩ ∂Vj | ≤ t for every j ∈ [i ].

(v) There is a linear extension

u1 ≺ . . . ≺ un(Gi )

of ≺i to V (Gi ) such that Xi ∪ Yi ≺ Vi \ (Xi ∪ Yi ),
and, for every j in [n(Gi )],
(a) either uj ∈ Xi ∪ Yi ,

(b) or uj ∈ Vi \ (Bi ∪ Yi ) and
∣∣∣NG (uj) ∩ {u1, . . . , uj−1}

∣∣∣ ≥ τ(uj),

(c) or uj ∈ Bi \ Xi and
∣∣∣NG (uj) ∩ {u1, . . . , uj−1}

∣∣∣ ≥ τ(uj)− ρi (uj).
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Dynamic Monopolies

Claim

dyn(G , τ) = min
{

1 + dynk(Bk , ∅, 0), 0 + dynk(∅, ∅, 0)
}
.

Claim

For every i and every local cascade (Xi ,≺i , ρi ) for Gi , dyni (Xi ,≺i , ρi ) can
be determined recursively in polynomial time.

�
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Vaccination

dyn(G , τ) may be considered a measure of network vulnerability.

Given a budget b ∈ Z≥0, we want to minimize this vulnerability by
maximizing dyn(G , τ)

Scenario 1
By increasing the threshold value of b vertices beyond their degree.
(Note that the vaccinated vertices belong to every dynamic monopoly
and still participate in the spreading.)

Scenario 2
By removing b vertices.
(The vaccinated vertices no longer participate in the spreading.)

Scenario 3
By increasing the threshold values of individual vertices subject to
vertex-dependent lower and upper bounds, and fixing the total
increase to b. (Partial/imperfect immunization.)
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Vaccination

Theorem (Khoshkhah et al. ’15)

Let τ̄ ∈ R>0.
If G is a graph with vertex degrees dG (u1) ≤ . . . ≤ dG (un(G)), then the
maximum of dyn(G , τ) over all non-negative choices for τ such that the
average threshold is at most τ̄ equals

max

{
k :

k∑
i=1

(dG (ui ) + 1) ≤ n(G )τ̄

}
.

Proof: Follows easily from the bound due to Ackerman et al. �

Theorem (Khoshkhah et al. ’15)

Requiring 0 ≤ τ ≤ dG in the above setting, the problem becomes NP-hard
for planar graphs but can be solved efficiently for trees.
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Vaccination

The three scenarios lead to the following parameters:

vacc1(G , τ, b) = max

{
dyn(G , τX ) : X ∈

(
V (G )

b

)}

vacc2(G , τ, b) = max

{
dyn(G − Y , τ) : Y ∈

(
V (G )

b

)}

vacc3(G , τ, ιmax, b) = max
{
dyn(G , τ + ι) : ι ∈ ZV (G),

0 ≤ ι ≤ ιmax, and ι(V (G )) = b
}
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Vaccination

Theorem (BDEPR ’18)

Given a tree T of order n, τ , b, and ιmax,

vacc1(T , τ, b) and vacc3(T , τ, b) can be determined in
O
(
n2(b + 1)2

)
time, and

vacc2(T , τ, b) can be determined in O
(
n3(b + 1)2

)
time.
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Thank you for the attention!
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